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Abstract

Color segmentation is a very popular technique for real-time object tracking. However,

even with adaptive color segmentation schemes, under varying environmental conditions

in video sequences, the tracking tends to be unreliable. To overcome this problem, many

multiple cue fusion techniques have been suggested. One of the cues that complements

color nicely, is texture. However, texture segmentation has not been used for object track-

ing mainly because of the computational complexity of texture segmentation. This paper

presents a formulation for fusing texture and color in a manner that makes the segmen-

tation reliable while keeping the computational cost low, with the goal of real-time target

tracking. An autobinomial Gibbs Markov Random Field (GMRF) is used for modeling the

texture and a 2D Gaussian distribution is used for modeling the color. This allows a proba-

bilistic fusion of the texture and color cues and for adapting both the texture and color over

time for target tracking. Experiments with both static images and dynamic image sequences

establish the feasibility of the proposed approach.

Key words: Visual Tracking, Color Segmentation, Texture Segmentation, Cue Fusion

1 Corresponding author.

Preprint submitted to Elsevier Preprint 4 December 2001



1 Introduction

Some of the most popular methods for real-time visual tracking of moving objects are based on

color segmentation [1, 2, 3]. The main reason for choosing color-based segmentation is that the

color cue is relatively invariant to scale, illumination and viewing direction while being computa-

tionally efficient.

Although the different color-based tracking approaches reported in the literature demonstrate a

certain degree of adaptation to object color changes, for complex backgrounds and changing envi-

ronments, the reliance on one cue can lead to poor tracking performance. This suggests the use of

multiple cues for tracking.

Texture provides a way of characterizing the spatial structure of an object and can complement

the use of color for reliable object tracking. In the presence of uncertainty, pixel neighborhood

information can be exploited for more robust segmentation. Texture segmentation uses neighbor-

hood statistical information since it is a non-local process unlike pixel-based color segmentation.

However, texture segmentation is computationally demanding. Hence a combination of a color

segmentation scheme with texture segmentation can be used advantageously to achieve real-time

robust object tracking.

There is a large body of literature that addresses different aspects of the texture segmentation prob-

lem. However, texture segmentation has not been considered in the context of real-time object

tracking mainly because of two reasons. First, texture parameter estimation and segmentation is

computationally inefficient, making real-time implementation difficult. Second, unlike color, ob-

taining scale and rotation invariant texture information in a dynamic environment is very difficult.

In this work a new approach for tracking a moving object using a combination of adaptive tex-

ture and color segmentation is proposed. A Gibbs Markov Random Field (GMRF) is used for

modeling the texture and a 2D Gaussian distribution is used for modeling the color. This allows

a probabilistic framework for fusing the texture and color cues at region level and for adapting

both the texture and color segmentation over time for target tracking. The fusion of texture and

color makes the segmentation reliable while keeping the computation efficient with the goal of

real-time target tracking. A Kalman filter based motion estimation and prediction further helps in

improving performance. Experiments with both static images and dynamic image sequences are

used for establishing the feasibility of the proposed approach. The experiments were conducted for

both indoor and outdoor scenes. Scenes with complex backgrounds and mixtures of similar object
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colors and textures were particularly chosen to test the algorithm. The experiments show that the

probabilistic fusion of texture and color information at the region level improves the robustness of

the tracking system under difficult visual conditions.

The rest of paper is organized as follows. Section 2 discusses the background and related work

on color and texture segmentation in the context of target tracking. Section 3 explains charac-

terization of textured images by using Gibbs Markov Random Fields(GMRF), the autobinomial

model and the parameter estimation method. Section 4 gives a formulation of color segmentation

using a Gaussian distribution that is appropriate for adaptive segmentation. Section 5 presents a

formulation for fusing color and texture. Section 6 proposes an approach for adapting texture and

color segmentation during the tracking process. Section 7 presents the experimental results and

performance analysis of color and texture segmentation on both static images and dynamic image

sequences. Section 8 concludes with a discussion of the issues involved in improving color and

texture segmentation for more efficient and reliable target tracking.

2 Background and Related Work

2.1 Color Segmentation

In recent years, the analysis of color images has been playing an important role in computer vision

because color can provide an efficient cue for focus of attention, object tracking and recognition

allowing real time performance to be obtained using only modest hardware. Color segmentation

is also computationally efficient and relatively robust to changes in illumination, in viewing direc-

tion, and in scale. Robustness is achieved if the color components are efficiently separated from

luminance in the original image and color distribution is represented by a suitable mathematical

model for thresholding [4].

Sharbek et al. [5] reviewed color segmentation algorithms and categorized them as pixel, area,

edge and physics based segmentation according to their attributes. There is no winner among color

segmentation algorithms. The effectiveness of an algorithm changes with application. Several re-

searchers have compared different color spaces for the application of skin detection [4][6]. For

example, [7] and [8] present comparisons of unsupervised and supervised color segmentation al-

gorithms respectively.
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For online applications, two color segmentation methods are mostly used. The first method uses

Gaussian mixture models to characterize color distribution of an object [1] [3] [4]. The second

method employs a histogram model [9][10]. The histogram-based methods are basically non-

parametric forms of density estimation in color space.

Although color is an efficient cue for computer vision applications, a number of viewing factors,

such as light sources, background colors and luminance levels, have a great impact on the change

in color appearance. Most color-based systems are sensitive to these changes. There are two major

approaches for handling environmental changes. The first approach finds the effects that change

the color and use them as inverse filter to obtain the real color [11][12][13]. The second approach,

adaptive color segmentation, adapts the previously developed color model to the changing environ-

ment [1][3]. This approach is more suitable to compensate for changes in the natural environment.

However, just adapting color may not achieve the robustness desired, motivating multiple cue ap-

proaches.

2.2 Texture Segmentation

Texture has been widely accepted as a very important feature in image processing and computer

vision since it provides unique information about the physical characteristics of surfaces, objects,

and scenes [14]. Numerous texture segmentation methods have been proposed in the past. Reed et

al.[15] categorized texture feature extraction methods as feature-based, model-based and structural.

Especially stochastic image models based on the Gibbs distribution have received a lot of attention

and have been applied in ecology, sociology, statistical mechanics and statistical image modeling

and analysis [16, 17].

Gibbs Markov Random Field (GMRF) theory provides a foundation for the characterization of

contextual constraints and the derivation of the probability distribution of interacting features [18].

A comprehensive discussion about the use of MRF in computer vision and the statistical aspects of

images is given in [18] [19]. GRFs were applied to textured images for modeling and segmentation

by Derin et al. [20]. Cross et al. [21] explored the use of GMRFs as texture models. They used

the binomial model where each point in the texture has a binomial distribution with a parameter

controlled by its neighbors and ”number of trials” equal to the number of gray levels. Schroder et

al. [17] recently used the autobinomial GMRF model as a powerful, robust descriptor of spatial

information in typical remote-sensing image data.
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Panjwani et al. presented a model that extracted texture information from the interaction within

and between color bands [22].The disadvantage of this method is its computational complexity.

Dubuisson et al. combined texture and color separately by using maximum likelihood estimation

[23]. Because of this separation they decreased the interaction of cues.

2.3 Tracking with Multiple Cue Fusion

Recent developments in computing devices, video processing hardware, and sensors enable the

construction of more reliable and faster visual tracking systems. Despite these advances, most

visual tracking systems are brittle. In particular, the systems which rely on a single cue or method-

ology for locating their targets are easily confused in commonly occurring visual situations. Some

color based tracking techniques try to increase the reliability by updating the color cues over

time [1, 2, 3]. Other approaches similarly employ multiple cues to get more reliable information

[14, 24, 25, 26].

Yang et al. introduced a tracking algorithm which constructs a self-adapting model from the de-

tected moving object, using features such as shape, texture, color, and edgedness[25]. In a work by

Murrieta et al. color and texture information was used to characterize and track specific landmarks

[24]. Paschos et al. described a visual monitoring system that performs scene segmentation based

on color and texture information [14]. Color information was combined with texture to detect and

measure changes in a given space or environment over a period of time. Deng et al. used a com-

bination of color, texture and motion to analyze and retrieve video objects [26]. However, none of

these reported works utilize a combination of texture and color for tracking moving objects.

3 Formulation of Texture Segmentation

In this work, Gibbs Random Fields are used to model the texture information. This section first

briefly reviewes GRF theory. Furthermore, the auto-binomial GRF, is discussed, followed by a

description of the linear parameter estimation process.

The image is assumed to be the realization of a random fieldxs of pixel sites. This random field is

called Markovian, if the probability density function of the pixelxs is completely determined by

the values of the pixels in the local neighborhoodN(xs). Figure 1 shows a particular neighborhood
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N(xs) = {xi, x̂i}. The index labels the two pixel cliques consisting of two facing neighborsxi and

x̂i.

Such a Markov field can be described as a Gibbs field with a local energy functionH(xs,N(xs); θ)

with θ being a vector of scalar parameters reflecting the influence of the different cliques{xi, x̂i}.

For a single pixel sitexs, this approach results in the conditioned probability distribution

p(xs|N(xs)) =
1

Z
e−H(xs,N(xs);θ) (1)

The variableZ, the partition sum, normalizes the distribution. The parameter vectorθ weights the

contributions of the different neighborhood pixels and is a parameterization of the image content.

The form of the energy function should be chosen depending on the image model. In this work,

the autobinomial model, which was recently used by Schroder et al. [17] with a different scaling of

parameters, is used for modeling the image. Using this model the parameter estimation can be done

efficiently while being able to characterize real images adequately. In the following, the notation

and formalism is adapted from the work presented in [17].

In the autobinomial model, the energy function is defined as

H(xs,N(xs); θ) = − ln



G

xs


− xsη(θ, xs) (2)

where the G denotes the maximum gray value and



n

m


 denotes the binomial coefficients. The

influence of the neighboring pixels is represented by the linear equation

η(θ, xs) = θ0 +
∑

i

θi
xsi + x̂si

G
. (3)

The coefficients

θ = [θ0, θ1, θ2, θ3, θ4, θ5, θ6...]
T (4)
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determine interaction between the pixels and hence the statistical properties of the random fieldxs.

A typical realization of the random field corresponds to a typical appearance of the image or in our

context to the spatial properties of the texture.

For the autobinomial model, the partition sum Z is calculated as

Z =
G∑

x=0

e−H(x,η) = (1 + eη)G (5)

Therefore, the PDF of the autobinomial can be written as

p(xs|N(xs), θ)(xs)) =



G

xs


 xs(1− )G−xs (6)

with  = 1/(1 + e−η).

The mean and variances are found to be

E[x] =
G

1 + e−η
(7)

and

Var[x] = E[x2]− E[x]2 = G
e−η

(1 + e−η)2
(8)

For η = 0, the mean and variance are obtained asE[x] = G/2 andVar[x] = G/4. Before the pa-

rameter estimation, data is normalized to these values. Therefore, the estimated parameters depend

on spatial information more than intensity radiometric properties.

The parameter vectorθ of the Model parameterizes the spatial information of the image. Reliable

and robust MRF parameter estimation can in general be quite complex [18], but for the auto-

binomial model an efficient closed form conditional least square (CLS) solution exists and were

recently applied to remote sensing data retrieval [17].

The CLS estimator is defined as

θ̂ = argmin
θ

∑
s

(xs − E[xs])
2 (9)

By using the expectation (7), equation (9) can be written as
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θ̂ = argmin
θ

∑
s

(xs − G

1 + e−η
)2. (10)

In [17] it was shown how that, using a mean field approximation,η can be approximated as

η ≈ − log
(
G

xs
− 1

)
+N(0, δ) (11)

whereN(., .) is a Gaussian noise term of zero mean and some small varianceδ. With the definition

of η, equation (3), the parameter estimation process is reduced to the overdefined set of linear

equations

Gθ = d + n, (12)

whereθ is the unknown parameter vector,

ds = − log
(
G

xs
− 1

)
, (13)

andn a Gaussian noise vector.G is a matrix containing the neighboring pixel values

Gs,t =




1 if t = 0

xst+x̂st

G
otherwise.

(14)

The valuesxst andx̂st denote the two t-th neighbors of the pixelxs according to the definition in

Figure 1. With the assumption that the noise termn is Gaussian, the maximum likelihood estimate

of θ is given by

θ̂ = (GTG)−1GTd (15)

Thus, this provides a closed form solution for the texture parameters allowing to efficiently map

texture image information to a low dimensional parameter space, making it appropriate for target

tracking.
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4 Formulation of a color space and model

The selection of the color space is one of the key factors for efficient color information extraction.

A number of color space comparisons are presented in the literature as stated in section 2.1. After

experimentally observing the effect of different color spaces on the segmentation results, the YES

space was selected as the most appropriate color space. For details, the readers can consult [27].

Luminance-chrominance is known as the YES space, where “Y” represents the luminance channel

and “E” and “S” represent the chrominance components. The YES space is defined by a linear

transformation of the SMPTE (Society of Motion Picture and Television Engineers) RGB coordi-

nates, given by




Y

E

S



=




0.253 0.684 0.063

0.500 −0.500 0.000

0.250 0.250 −0.500







R

G

B




(16)

The second important element of color segmentation is the choice of the model for the object

color distribution. Color histograms and the Gaussian models have been successfully used for real-

time color segmentation systems. Color histograms [28] are a simple and non-parametric method

for modeling color. But they need sufficiently large datasets in order to work reliably. A second

drawback is the difficulty of adapting the model over time. A more effective approach is to model

the color distribution with a 2D Gaussian. The representation of color distribution is possible using

relatively little data with the Gaussian model. It is also suitable for adaptive color segmentation.

Based on the chrominance components E and S, a bivariate(2D) Gaussian distributionN(µc,Σ
2
c)

with meanµc and covarianceΣc is used to represent the distribution of object color. The 2D Gaus-

sian probability density function is

p(zc|objectcolor) =
1

2π|Σc| 12
exp

(
−1

2
[zc − µc]

TΣ−1
c [zc − µc]

)
, (17)

where
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zc =



E

S


 , µc =



µE

µS


 ,Σc =



σ2

E σES

σSE σ2
S


 .

The distributionp(zc|objectcolor) is simplified to the Mahalanobis distance ([zc−µc]
TΣ−1

c [zc−µc])

by taking the natural logarithm. Color segmentation is performed by calculating the Mahalanobis

distance for the pixels in a small region and comparing its values to a thresholdτc.

5 Fusion of Texture and Color

In this work, color and texture segmentation is integrated by estimating their joint probability

distribution function (PDF). Using a joint probability function of cues enables one cue to support

the other one if it becomes unreliable due to environmental changes. Texture and color PDFs are

combined at the region level because reliable texture information extraction is only possible if

performed with sufficient sample sizes. The regionR(xs) is defined as a3× 3 sub-window in the

5× 5 texture region window centered around the pixel sitexs as shown in Figure 2. Each window

element itself containsM ×M pixels for typical valuesM = 5 . . . 15 depending on the texture

scale.

Because color and texture features are conditionally independent, the probability of the region

belonging to classω can be expressed as:

p(zt,s, zc,s|ω) = p(zc,s|ω)p(zt,s|ω) (18)

wherezc,s = [ES]T denotes the average chrominance vector andzt,s denotes the average texture

feature vector in the neighborhoodR(xs) around the pixel sitexs. With the above definition of

R(xs), this means the average value of9M 2 pixel samples. To keep the notation in the remainder

of this section simple, the pixel site indexs is dropped.

As described in section 4, the color distribution is modeled by a Gaussian:

p(zc|ωi) =
1

(2π)|Σc,i| 12
exp

(
−1

2
λc,i

)
, (19)
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where

λc,i = [zc − µc,i]
T (Σc,i)

−1[zc − µc,i]. (20)

µc,i andΣc,i denote the mean vector and covariance matrix ofzc, respectively, for classωi.

Let θn denote the texture parameter vector estimated from thenth neighbor window of the region

centered aroundxs. As for the color distribution, this estimate is based on9M 2 pixel samples. The

texture feature distribution is modeled by a Gaussian probability distribution. The probability of

thenth neighbor window region belonging to classωi can be written as

Pni = p(θn|ωi) =
1

(2π)
d
2 |Σt,i| 12

exp
(
−1

2
λt,ni

)
, (21)

where

λt,ni = [θn − µt,i]
T (Σt,i)

−1[θn − µt,i] (22)

andµt,i andΣt,i denote the mean vector and covariance matrix ofθ, respectively, for classωi.

The texture parameters are estimated for each ofN = 9 neighbor windows as shown Figure 2.

Therefore,p(zt|ω) can be expressed as a function ofN neighbor probabilities:

p(zt|ωi) = F(P1i, P2i, P3i, ...PNi) (23)

The experimental results show that the distance of the region texture vectorzt to the classωi, λt,i,

can be expressed as the average of the N neighbor distancesλt,ni

p(zt|ωi)=
1

(2π)
d
2 |Σt,i| 12

exp

(−∑N
n=1 λt,ni

2N

)
(24)

=
1

(2π)
d
2 |Σt,i| 12

exp
(
−1

2
λt,i

)
(25)

With assumption of conditional independence of the color and texture cues, the PDFsp(zc, zt|ωi)

can be approximated as
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p(zc, zt|ωi) ∝ exp
(
−1

2
(λc,i + λt,i)

)
(26)

Because of the assumption of dynamic and complex background, the representation of the back-

ground is very difficult. Therefore, the region classification proceeds with the following hypothesis

test:

x ∈



ωtarget if

(
λc,target

τc
+ λt,target

τt

)
< τfusion

ωbackground otherwise.

(27)

whereτc andτt are respectively color and texture segmentation thresholds which are specified by

the user or computed by the system using the ROC curve analysis at the initialization level as

described in [29][30]. When the desired segmentation is accomplished for both cues, the value of

the combined distances becomes smaller than 2. The segmentation is obtained forτ fusion values in

the range[1.5, 2.5].
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6 Adaptation of Texture and Color for the Target Tracking

The appearance of the target object varies over time. If the tracking system does not compensate

these changes, it may lose the object. Under the assumption that the appearance changes gradually,

a statistical adaptation scheme is proposed. Basically, the adaptation scheme updates the mean and

the covariance of the texture and color feature vectors over time. The process keepsL previous

mean and covariance estimates and the number of sample points for each mean and covariance.

The new estimates at time(l + 1) are calculated as follows:

µ̂l+1
c =

µ0
cN

0
c

∑l−1
s=l−L+1 µ̂

s
cN

s
c + µl

cN
l
c

N0
c +

∑l
s=l−L+1N

s
c

(28)

Σ̂l+1
c =

Σ0
cM

0
c +

∑l−1
s=l−L+1 Σ̂

s
cM

s
c + Σl

cM
l
c

M0
c +

∑l−1
s=l−L+1M

s
c

(29)

whereN l
c andM l

c denote the number of sample points for calculating the color feature vector mean

and covariance at time l, respectively. The texture variance and mean are calculated in the same

manner

µ̂l+1
t =

µ0
t +

∑l−1
s=l−L+1 µ̂

s
tN

s
t + µl

tN
l
t

N0
t +

∑l−1
s=l−L+1N

s
t

(30)

Σ̂l+1
t =

Σ0
tM

0
t +

∑l−1
s=l−L+1 Σ̂

s
tM

s
t + Σl

tM
l
t

M0
t +

∑l−1
s=l−L+1M

s
t

(31)

withN l
t andM l

t denoting the number of sample points for calculating the texture parameter vector

mean and covariance at time l, respectively. Protecting the system from adapting to a wrong target

is the most important problem for a self-adapting system. In the tracking system presented here are

several levels of protection. After passing another test with thresholdτc/t/2, color mean samples

are collected at the pixel level and the texture mean samples are collected at the region level.

Samples of the covariances are collected after passing the fusion threshold. The sum of means at

time l = 0 are added to the above estimates to make the system memorize the initial values. This

way, the resulting estimates are always in close proximity to the initial values.
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6.1 Algorithm

This section describes the overall system (Fig. 3). First a region of the color image, which is

bounded by a tracking window, is sub-sampled and color segmented with the method described in

section 4. The biggest connected component is selected as the region of interest. Within this region,

the color image is segmented by fusing texture and color as described in section 5 and the biggest

connected component again taken as the final target ROI. This two-step process effectively reduces

the size of the region at which a texture analysis has to be performed. Suitable samples for the color

and texture adaptation process are obtained from within the target ROI. The adaptation process

updates the color and the texture model before the next frame. Using predicted and measured

locations, a Kalman filter is used to estimate the next location of the target. A window centered at

the estimated location is used as the initial region for the next frame. The window size is allowed

to changed with the size of the target.

7 Experimental Evaluation

This section describes the experiments for evaluating the performance of the proposed adaptive

texture and color segmentation method. Two test databases where created for this purpose. The

first database contains static images with various objects each having different textures and colors,

and was used to fine tune and develop the basic texture and color segmentation algorithm. The

experimental results and observations are described in section 7.1. The second database consists

of a set of dynamic image sequences and was used for testing the adaptation of color textures for

moving target tracking. The results of the experiments are shown in section 7.2.

7.1 Experiments with Static Images

This section presents experimental results and observations for the segmentation of static images

using color and texture fusion. The main purpose of these experiments is to show how the fusion

of cues enhances the reliability of the segmentation. The proposed algorithm is tested on real color

texture images. The images where chosen to have objects with colors and textures similar to the

background.

Three real image examples were selected to show the importance and the effectiveness of color and
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texture fusion. The segmentation result for an image containing three different wooden textures is

shown in Figure 4. The system was initialized by taking a sample from the upper left texture in

Figure 4(a). Figure 4(b) shows that the color segmentation itself cannot separate the left textured

wooden surface from the right one. The segmentation that is achieved by combining texture and

color is shown in Figure 4(c). The result shows that the texture cue clearly helps to discriminate

the object from the background.

Figure 5 shows a scene containing a tree and a patch of lawn. The goal of this experiment is to

separate the tree from the background of the image. An appropriate sample from the tree is taken

to initialize the procedure. Figure 5(b) shows that the color segmentation of the tree object is very

noisy. No clear discrimination between the tree and the background can be seen because both have

very similar color distributions. In Figure 5(c) the image is thresholded using texture segmentation

alone. This gives a better result compared to the color segmentation because the tree and the lawn

differ more in texture than in color. However, small false positive components can still be seen.

The image in Figure 5(d) shows the result of fusing texture and color cues. The tree is now clearly

separated from the background. The frame was taken from a compressed movie file therefore the

compression algorithm produces a noise pattern on the image which can be seen in Figure 8 (b).

The image in Figure 6 serves to demonstrate how the proposed algorithm increases the separation

of a target object from the background. An image sample was taken from the center of the ball.

The goal of this experiment is to investigate for each location(x, y) in the image, the similarity

z = 1/d(x, y) between that location and the ball (i.e., the image sample that was taken from

the ball). In particular, this experiment shows the advantage of performing a texture parameter

averaging over the nine neighbor windows for each image location. As the similarity measure, the

inverse Mahalanobis distance1/λt,ball according to equation (25) was used. Figure 7 shows the

similarity measurement when we look along the y-axis. Figure 7(a) shows the result of similarity

map obtained by using texture segmentation without performing parameter averaging (i.e., the

texture parameter is calculated estimated only from the sub-centered regionN(xs)). Even though

a separation between the objects can be seen in the graph, it is not enough to discriminate the ball

from the background. Figure 7(b) shows the result for using the approach of averaging the nine

texture distances obtained from neighboring region windows. It can be seen, that the separation is

increased and the block variation is decreased. In Figure 7(c), the similarity map is obtained by

using the proposed model for integration of color and texture. As seen in Figure 7(c), the color

integration enhances the separation of the ball image quite well.
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7.2 Experiments with Dynamic Image Sequences

This section presents experimental results and observations for the proposed tracking system ap-

plied to dynamic image sequences. The main purpose of these experiments is to show how the

tracking system performs in dynamic environments. The tracking system is tested on various syn-

thetic and natural image sequences. Each experiment starts with an initialization process where a

small area is selected for estimating the initial parameters of the color and texture models. After the

parameter estimation, the tracking process begins with the segmentation step inside the selected

area.

The first type of image sequences is captured from natural outdoor scenes. Several scenes that

included trees and grass were selected for two reasons. Firstly, trees and grass have distinct textures

while often being very similar in color. Secondly, due to the self-similarity at different scales,

trees provide good textures at any viewing distance. Motion is introduced by changing the camera

location in the scene. Variations in color and texture are obtained from the change in viewing

direction and from the digitization process. The algorithm was operated on decompressed image

data which produces a noise pattern, that changes with the motion of the camera. As an example,

the difference between sample images taken from the same location of the tree object can be seen

in Figure 8(a) for the stationary camera and in the Figure 8(b) for the moving camera.

Among the natural sequences, one image sequence is selected to demonstrate the result of the

cue integration, the adaptation of model parameters and the tracking performance. Figure 8(c)

shows the result of the tracking algorithm with the tree as the target. Figures 9(a) and (b) show

the adaptation of the first component of the mean color vector and the first parameter of the texture

model vector respectively. Figure 10 shows the result of tracking the tree with the tracking window

(incorrectly) centered on the grass. Figures 11(a) and (b) again show the adaptation of the first

components of the color and the texture vectors. It can be seen how the parameter vectors are

adapted continuously over time during the sequence. In Figure 10 the tracker initially can’t find

the target object and does not perform any adaptation until frame number 75 when it finds the tree

object and begins the adaptation. The adaptation is made especially challenging due to vertical

camera motion between frames 85 and 180 which leads to fluctuations in the color model. The

tracker needs some time to zero in on the color model of the tree until it finally stabilizes after

frame 140. This experiment also shows the independence of the texture and color cues. While at

certain times the color parameter has to be adapted to account for changes in the color properties

of the target object, the texture parameters remain stable and vice versa.
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To obtain a more controlled situation, the second type of sequences are synthetically combined

images of natural textures. Figures 12 and 14 demonstrate how the integration makes the seg-

mentation more reliable. The images consist of background and foreground textures which are real

texture images obtained from Columbia University and Utrecht University reflectance and texture

database [31]. A background texture moves along two paths from the upper side of the image to

the bottom left of the image. On its path, it is occluded by several foreground textures. The fore-

ground textures are selected according to their color and texture similarity. The parameter vectors

are initialized with samples from the right upper corner of the background texture. The velocity

vector is initially set to a non-zero value towards the left bottom corner of the image. Figures 12

and 14 show the same experiment with different paths and tracking window sizes. Figures 13(a)

and (b) show the adaptation of the first parameter of the mean color vector and the first parameter

of the texture model vector respectively. Figures 12 and 14 show that the target texture gets par-

tially occluded by the foreground textures. However, the algorithm manages to continue tracking

the target, without adapting to the color and texture of the foreground. Thus, this shows, how the

combination of cue fusion, adaptation and prediction makes the tracking system reliable, even in

the presence of occlusion.

8 Discussion

The experiments show that the combination of color and texture cues can provide more information

than any of the cues alone. The main reason is their independence from each other. While color

is processed based on the chromacity information, the texture parameters are calculated from the

luminance. In addition the cues are extracted at different scales. Color is defined on a per pixel

basis and is processed at this level. Texture however, is extracted at a region level, which allows to

obtain more information about the spatial relationship of the underlying structure.

The local information supported by the neighborhood information results in a high entropy extrac-

tion per pixel. However, the different scales of the information makes the probabilistic combination

difficult. In this work color and texture are both combined at a regional level. Because texture in-

formation is calculated over a set of regions, it gives more reliable results than when calculated

based on a single region.

Choosing the right window element sizeM used for the texture parameter calculation is very

important, especially for getting good representation of the parameter covariance matrix. Larger
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values yield better texture parameter estimates but increase the computational cost. In general, the

window element size depends on the texture scale of the target object. After the experiments and

cost calculation,M = 5 was selected as the most typical window element size for the system.

In this work, the average of the Mahalanobis distances calculated from the parameter vectors is

used. Other forms of the function (23) are possible and where investigated, but the average of

distances gives the best result both in terms of performance and cost efficiency.

Although the adaptation to environmental changes makes the tracking system more flexible, it has

important drawbacks. There is a risk of adapting the model parameters to wrong targets or the

background which can result in a complete loss of target. However, the independence of the cues

prevent to some extend the adaptation to a wrong target because changes in the environment are

less likely to cause changes in both cues at the same time (Fig. 9 and 11). For example, scaling in

general changes the texture of an object but leaves the object color unchanged. Furthermore, the

use of texture and color cues can also aid when tracking multiple targets because the chances of

targets being similar in both color and texture is less than similarity in a single cue alone. In this

work additional counter measures where proposed to prevent adapting to the wrong target after

the color and texture segmentation, as explained in section 6. When the tracking target and the

background both show very little actual texture, the system reduces to an adaptive color tracker.

Nevertheless, even the absence of a texture is modelled by the system and our two cue approach

aids in situations where non-textured targets are moving in front of a textured background.

Further experiments will have to show, to what extend the adaptation of the covariance matrices

are necessary. First tests indicate that the covariance matrices change little over time and that

the tracking algorithm performs well, even if the covariances are not adapted. Assuming constant

covariances would be a great advantage because the recalculation of the covariance matrices is

computationally very expensive.

One of the difficulties faced in this work is the quantitative performance evaluation of the results

because establishing the ground truth for this work is very difficult. For the segmentation results,

the error and the correct percentages where not computed because the main purpose of the system

is to detect the presence of the target object. A quantitative measures of the segmentation does not

express the performance of the proposed tracking scheme.

It is important to note that our work so far has only been aimed at investigating the feasibility of

fusing texture and color for target tracking. Depending on the parameters, especially the window
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element size M, the algorithm runs at five frames per second on a 200 MHz SGIO2. A careful

implementation of the algorithm will be able to run at near real-time speed on the hardware de-

scribed above. To achieve real-time performance, additional strategies can be implemented. For

example, a compromise between robustness and performance could be achieved by performing a

texture analysis on every second frame while doing the color segmentation for every frame.

The experiments have shown that the texture segmentation gives very high error distances near the

boundaries. The cause of this might be unbalanced textures at these points. This observation could

in the future be used for controlling the boundary location of the target object. The integration

method can be improved by changing the thresholdsτc andτt adaptively over time, for example by

using threshold histograms. The Kalman filter can also be used for updating the parameter vectors

but this would require modeling the color and texture vector changes parametrically.

9 Conclusion

This paper presents a novel technique for combining texture and color segmentation in a manner

that makes the segmentation robust under varying environmental conditions while keeping the

computation efficient for real-time target tracking. A probabilistic basis is used for combining

texture and color cues using the Gibbs Markov Random Field for the texture and the 2D Gaussian

Distribution for the color segmentation. Both the color and texture segmentation is adapted over

time in a manner that increases the probability of correct segmentation while not “drifting” with

the changing background. Extensive experiments with both static and dynamic image sequences

were used for establishing the feasibility of the proposed approach. The work demonstrates the

advantages of fusing multiple cues within a stochastic formulation while providing a scheme for

practical implementation of target tracking applications.
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Figure 1
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Fig. 1. Definition of the local neighborhood around the pixel sitexs.
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Figure 2
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Fig. 2. The sub center window N(xs) with N = 9 neighbor windows. Each window element has size

M ×M pixels. The color parameter vector is estimated based on the region N(xs). For the texture analysis,

a parameter vectors are estimated for each of the neighbor windows and subsequently averaged.
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Figure 3
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Fig. 3. Schematic overview of the system details for tracking moving targets with adaptive color and texture

segmentation.
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Figure 4

(a) (b) (c)

Fig. 4. Experiment performed on a natural image containing three wooden textures (a). The result of per-

forming a color segmentation can be seen in image (b). (c) shows the segmentation that is obtained by fusing

texture and color.
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Figure 5
            

(a) (b) (c) (d)

Fig. 5. Experiment performed on a natural image containing natural textures (a). The result of performing

a color segmentation can be seen in image (b). (c) shows the segmentation that is obtained by using texture

alone. The fusion of texture and color results in image (d).
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Figure 6

Fig. 6. Image of a football that is used for examining the discrimination power of the texture and color fusion

approach. The football has a spatially varying texture and color due to its shape and the lightning condition.
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Figure 7

(a) (b) (c)

Fig. 7. Similarity measures after segmentation based on (a) one texture sample region obtained from the

sub-centered window, (b) the average of the texture estimates based on the nine neighbor windows, (c) the

combination of color and texture.
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Figure 8

(a) (b)

Frame 5 Frame 25 Frame 43

Frame 65 Frame 85 Frame 129

(c)

Fig. 8. Image showing a section of the tree for a stationary camera (a) and a moving camera (b). The full

tree tracking sequence can be seen in (c).
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Figure 9
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Fig. 9. The adaptation of the E component of the color parameter vector (a) and the first component of the

texture parameter vector (b) during the tracking of the tree in Figure 8.
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Figure 10

Frame 5 Frame 47 Frame 55

Frame 85 Frame 110 Frame 180

Fig. 10. Sequence showing the capture and subsequent tracking of the tree. The sequence is the same as in

Figure 8.
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Figure 11

(a)

(b)

Fig. 11. The adaptation of the E component of the color parameter vector (a) and the first component of

the texture parameter vector (b) during the tracking of the tree in Fig. 10. It can clearly be seen how the

parameters are not adapted while the tree is not captured by the tracker.
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Figure 12

Frame 1 Frame 18

Frame 30 Frame 42

(a)

Fig. 12. Synthetic dynamic tracking sequence of a large textured object partially occluded by foreground

textures.
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Figure 13

(a)

(b)

Fig. 13. The adaptation of the E component of the color parameter vector (a) and the first component of the

texture parameter vector (b) during the tracking of the texture in Fig. 12.
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Figure 14

Frame 1 Frame 18

Frame 22 Frame 26

(a)

Fig. 14. Synthetic dynamic tracking sequence of a small textured object partially occluded by foreground

textures.

36


